http://pespmc1.vub.ac.be/Papers/Redko/ToEvCyb.html This paper was published in
V.G.Red'ko
It is interesting to understand how did a human logic through the biological evolution arise. This question correlates with a profound gnosiological problem: why is a human logic applicable to a cognition of the nature? Let's illustrate this problem by simple example. Let's suppose that physicist has described some phenomenon by means of differential equation (Fig.1). Then he integrates the equation and obtains the phenomenon characteristics. The transition from equation to characteristics is purely deductive, but applicability of this transition to physical phenomenon should be proved because it is not evident that physical objects obey the human logic rules. Fig.1. Why is In order to understand, why and how did logic rules and their applicability to the nature cognition arise, it is reasonable to construct the theory of evolutionary origin of human logic. Such a theory could include the mathematical models of the most important "intellectual inventions" of biological evolution (fig.2) [1] by means of which animals "cognize" the natural regularities as well as the models of evolutionary transitions between intellectual inventions of different levels. Fig.2. Intellectual inventions of biological evolution. "Authors of inventions and priorities dates" are shown drafty.
In my opinion, the logic origin theory should be an important part of evolutionary biocybernetics. Fig.3 illustrates the branches of the researches that can be referred to the evolutionary biocybernetics.
Fig.3. The research branches of the evolutionary biocybernetics. For the sake of the briefness, I shall mention only a few examples of the researches represented by fig.3. Models of molecular-genetic systems origin have been constructed in connection with the life origin problem. Quasi-species [2], hypercycles [3], and sysers [4] are the most known; these models describe mathematically some hypothetical processes of the evolutionary origin of cybernetic properties of primitive organisms. General models of evolution describe some informational and cybernetic aspects of evolution. Kauffman's automata [5] is an interesting example of them. These models describe dynamics of the systems of randomly coupled logical elements. Kauffman's automata can be interpreted as models of cellular molecular-genetic control systems. Effective methods of statistical physics are used to study the evolution of these automata [6]. In genetic algorithm and applied evolutionary modeling the symbol strings (model "genomes") are optimized according to some quality function ("organisms fitnesses") through the mutations, crossovers, and selection of the strings [7-9]. The combinatorial optimization is under particular interest of applied evolutionary modeling. Several models of neural networks evolution appeared last years [10,11]; they describe the optimization of structure or parameters of neural networks by means of genetic or evolutionary algorithms. The logic origin theory is not yet developed, and approaches to its construction will be discussed in the next section.
Adaptive syser [12] is the model of unconditional reflex at molecular-genetic level. Tsetlin's automata [13] are significant models of adaptive behavior in changing external environment. Tsetlin's automata illustrate the simple acquired properties of biological organisms. The "intelligence level" of these automata corresponds approximately to that of habituation (fig.2). There is a number of conditional reflex models, see for example [14-16]. But, in may opinion, some significant aspects of conditional reflex are not yet mathematically described, particularly it concerns to the role of the motivation in conditional learning. The It is too early to speak about results of logic origin theory, but some analogies between "intellectual inventions" of different levels can be noted. For example, classical conditioning can be considered as elementary inference: "If conditioned stimulus is followed by unconditioned stimulus and unconditioned stimulus is followed by certain animal reaction, then conditioned stimulus is followed by the same reaction", that represents the early ancestor of important deductive formula: (if A implies B and B implies C, then A implies C).
The preceding consideration of evolutionary biocybernetics is not complete: there are several potential branches of researches, which could be included in scheme of fig. 3. For example, evolution of sensory systems and evolution of internal homeostasis control systems could be interesting subjects of investigation. But logic origin theory is the most fundamental among them. Finally, it should to emphasize that logic origin theory is very interesting and perspective field of theoretical investigations, and aspiration to understand the causes of human logic cognition abilities could be a guide star of these investigations.
1. Voronin L.G. Evolution of higher nervous activity. Moscow: Nauka, 1977. 128 p. (In Russian). 2. Eigen M., McCasill J., Schuster P. Molecular quasi-species. // Journal of Physical Chemistry. 1988. Vol.92. N.24. PP.6881-6891. 3. Eigen M., P.Schuster P. The hypercycle: A principle of natural self-organization. Springer Verlag: Berlin etc. 1979. 92p. 4. Ratner V.A., Shamin V.V. Sysers: modeling of fundamental features of molecular-biological organization. Matching between the general properties of genetic processes and structural peculiarities of macromolecular assemblies. // Zhurnal Obshchei Biologii. 1983. Vol.44. N.1. PP. 51-61 (In Russian). 5. Kauffman S.A., Smith R.G. Adaptive automata based on Darwinian selection. // Physica D. 1986. Vol.22. N.1-3. PP.68-82. 6. Weinberger E.D. Local properties of Kauffman's 7. Fogel L.J., Owens A.J. Walsh M.J. Artificial intelligence through simulated evolution. Wiley. New York, 1966. 8. Holland J.H. Adaptation in natural and artificial systems. Un-ty of Michigan Press. Ann Arbor, 1975. 9. Bukatova I.L. Evolutionary modeling and its applications. Moscow: Nauka, 1979. 231 p. (In Russian). 10. Mangel M. Evolutionary optimization and neural networks models of behavior. // J. of Math. Biol. 1990. Vol.28. PP.237-256. 11. Teriokhin A.T., Budilova E.V. On evolutionary optimal neural networks controlling diurnal vertical migration in zooplancton. // J. Modeling, Measurement, and Control. Series C. 1996. Vol.55. N.1. PP.7-11. 12. Red'ko V.G. Adaptive syser. // Biofizika. 1990. Vol. 35. N.6. PP. 1007-1011 (In Russian). 13. Tsetlin M.L. Investigations on the automata theory and modeling of biological systems. Moscow: Nauka, 1969. 316 p. (In Russian). 14. Grossberg S. Classical and instrumental learning by neural networks. // Progress in Theoretical Biology. 1974. Vol.3. PP.51-141. 15. Barto A.G., Sutton R.S. Simulation of anticipatory responses in classical conditioning by neuron-like adaptive element. // Behav. Brain Res. 1982. Vol.4. P.221. 16. Gaase-Rapoport M.G., Pospelov D.A. From amoeba to robot: models of behavior. Moscow: Nauka, 1987. 288 p. (In Russian). 17. Anokhin P.K. System mechanisms of higher nervous activity. Moscow: Nauka, 1979. 453 p. (In Russian). 18. Ukhtomsky A.A. Dominanta as factor of behavior. // Collected works. Leningrad, 1950. Vol.1. PP.293-315. (In Russian). 19. Kryukov V.I. An attention model based on the principle of dominanta. // Proceedings in Nonlinear Science. Neurocomputers and Attention I: Neurobiology, Synchronization and Chaos. 1989. Ed. by A.Y.Holden and V.I.Kryukov. PP.319-351. 20. Korogodin V.I. Information and the phenomenon of life. Pushchino, 1991. 202 p. (In Russian). 21. Tsitolovsky L.E. Private communication. 22. Modeling of learning and behavior. Moscow: Nauka, 1975. (In Russian). 23.Weinzweig M.N., Polyakova M.P. Architecture of thinking system and neural networks. // Intelligence Processes and Their Modeling. Informational networks. Moscow, 1994. PP.132-151. (In Russian). |